Cosmos: Possible Worlds (2020) s01e07 Episode Script
The Search for Intelligent Life on Earth
TYSON: We search the
heavens for signs of intelligent life.
But what would
we do if we found it?
Are we ready for first contact?
Would we be smart enough to even know
if someone was sending us a message?
We've only been able to detect
radio signals for a little over a century.
Extraterrestrial civilizations
could have been bombarding
Earth with radio signals for millions
and billions of years before then,
and nobody here would have had
any inkling that it had ever happened.
And what if we seem
just like ants to them.
We all know how we treat ants.
What if the extraterrestrials
are smarter than we are,
have technology, weapons
that render us helpless?
The history of first contact
among terrestrial civilizations,
the humans of east and west,
north and south, has
been scarred by genocide.
In all of the cosmos,
is there such a thing as a first
contact story with a happy ending?
I know of one
first contact story,
but it's too soon to
know how it will turn out
♪♪
(theme music playing)
♪♪
♪♪
Series brought to you by Sailor420
!!! Hope you enjoy the TV-Series !!!
This scientific and
architectural wonder of the
world is in Southern China,
it's the largest radio
telescope on Earth,
in fact it's the largest
telescope of any kind.
The Five-Hundred Meter
Aperture Spherical Radio Telescope,
or FAST, as it's known.
This dish is a giant listening
device for detecting radio waves
that propagate
throughout the cosmos.
The mission of this telescope is
to solve unanswered questions
about the origin
of the universe,
and its early history.
It will also search for pulsars,
those rapidly
rotating neutron stars,
and for telltale signs
of gravitational waves,
ripples in the fabric
of space-time
And it will search for
signs of alien civilizations.
Especially those
very far away
I want to take you to a
place where we've begun to
eavesdrop on an intricate
global communications network.
We didn't even know
it existed until recently.
Complex beyond
our wildest imagining,
it was built by a
community whose population
is inconceivably vast.
Our distant ancestors,
tiny shrew-like animals,
came of age in places not
too different from this one.
Forests.
Maybe they knew what
we've only recently discovered.
The secret life of this
place is filled with drama,
abuzz with conversation.
Much of it is spoken in an
electrochemical language,
and it takes place
on a scale too small,
and in motion too slow,
for creatures like
us to even notice.
But there's something even
more amazing that was going
on right beneath our
feet, for the longest time,
and on a global scale,
and we had no
inkling that it was there.
An ancient, subterranean
worldwide web,
a vast neural network is
what binds the forest together,
making it an intercommunicating,
and interacting
dynamic organism.
One with agency, and the power
to influence events above ground.
It's called the mycelium.
It's a hidden matrix, the
creation of an enduring
collaboration among fungi,
plants, bacteria, and animals.
90% of all the trees and
plants on Earth are involved
in the mutually beneficial
relationship made
possible by the mycelium.
They exchange
nourishment, messages,
and empathy with one
another, across species,
and even across
the kingdoms of life.
Mushrooms are the
reproductive organs,
the fruiting bodies
of the mycelium.
To see a mushroom growing
wild in the forest is to know
that the great natural Internet
is online beneath your feet.
Some mushrooms spread
trillions of spores on the breeze,
each spore a paratrooper
carrying life's message.
This is mushroom sex.
After a while, in their
search for moisture,
this new segment of the
mycelium will return down
to the underworld, and link
up to the greater network.
The secret lives of trees
have been long-hidden from us.
For them, the mycelium is
their lifeline to one another.
It makes the forest a community.
They use it to parent,
to nurture each other
and even to devise
a stay of execution,
a reprieve from the axe.
When a tree is cut
down in the forest,
other trees reach out to
the victim with their root tips,
and send lifesaving
sustenance, water, sugar,
and other nutrients
via the mycelium.
This continuous IV drip
from neighboring trees can
keep this stump alive for
decades, and even centuries.
And they don't only
do it for their own kind.
They do it for the
trees of other species.
Why?
Is it because they know
that their lives depend on
the health of the whole forest,
and even on beings very
different from themselves?
Is it possible that the trees can
think in longer terms than we do?
We know they have
excellent parenting skills.
Take this fir tree.
This younger tree
here is its offspring,
and it requires
constant attention.
It's hardly young by our
standards, 60 years old.
But young trees don't know
that if they grow up too quickly,
there will be too much air
in the cells of their trunks.
Later, when the stormy
winds and predators come,
they'll be weak and vulnerable.
Like the young
of other kingdoms,
the fir wants to grow into
the light as soon as possible.
But the mother fir shades
it with her branches so that
it cannot binge on sunlight,
and grow up too
fast for its own good.
How many forests have I
been in without any awareness
of what was really
happening all around me?
Who are we to search for alien
intelligence when we can't even recognize,
or respect, the
consciousness all around us,
and even beneath our feet?
This stately maple senses
that the tiny caterpillar
is nipping at its leaf.
A signal is sent
through the tree,
just as it would go through
our own nervous system.
But not nearly so fast.
Again, the trees live on
a much slower time scale.
The speed of "ouch"
for a tree is only an inch,
every three minutes.
So, it will take at least
an hour for the tree to react
by generating the chemical
that will chase this pest away.
When a predator strikes,
the first thing a tree does
is to take a saliva sample in order to
sequence the DNA of the invading species.
It then tailors its chemical
response to the special
vulnerability of its enemy.
In certain cases, it releases
the precise pheromone that
will attract its enemy's enemy
to do the tree's fighting for it.
Is it fair to say that the
trees have a deep knowledge
of chemistry, entomology,
and other earth sciences?
How exactly is their
knowing different from ours?
Is it any different when we
humans do these things?
Throughout nature, we
find these electrochemical
conversations between
the life-forms of different
species and kingdoms.
But what of a conversation
between different worlds?
What might we share with the
intelligent civilization of another world?
Science and mathematics.
The symbolic languages of
the scientist, mathematician,
and the engineer avoid
those things that are lost
in translation from
one culture to another.
Symbolic languages, including
those used in programming,
have a much higher degree
of precision than words do.
They are not as open
to misinterpretation.
I know of only one
nonhuman symbolic language,
and only one instance when
we humans made contact with
the life-form that uses it.
Their knowledge of astronomy and
mathematics would astonish most of us.
Their commitment to resolving
their differences democratically,
and reaching the broadest
possible consensus through debate,
is unparalleled by any
human society that I know.
Tens of millions of years ago,
they had been carnivores,
but they gave that
up to become vegans.
It changed their world,
and resulted in surpassing
beauty wherever they wandered.
They are explorers who
use their symbolic language
to tell each other about the things
they have discovered on their travels.
This is their night sky.
I want to tell you their story.
TYSON: This is the shore
of the Panthalassic Ocean,
a sea that covered Earth's
entire Northern Hemisphere
in a period named
the Ordovician.
We've compressed all of
the time from this very second,
back to the beginning
of the universe,
into a single calendar Earth
year, a Cosmic Calendar.
Every month represents a
little more than a billion years.
Every week, nearly
300 million years.
Every day, about
40 million years.
The Big Bang is the first
moment of New Year's Day.
Our present, right now, is
at the stroke of midnight on
New Year's Eve.
I'm standing on the morning of
December 20th on the Cosmic Calendar,
480 million years
ago in Earth's history.
This was the time when
life began to diversify.
It's remembered as the Great
Ordovician Biodiversity Event.
It came 40 million years
after life's first big leap
into diversification known
as the Cambrian explosion.
This was the dawn
of the arthropods,
the invertebrates who wear
their skeletons on the outside,
instead of on the inside,
as we would one day do
hundreds of millions of years later.
The arthropods of the
Ordovician pioneered the most
successful body plan
ever evolved by life.
Even today, more than 80% of
all living animals are arthropods.
But around the time the
plants began to venture out
of the waters, a crustacean
staggered ashore,
and made a home in
the new world of the land.
Insects evolved
from the crustaceans.
A thought I do my best to
hold at bay whenever I'm dining
in a seafood restaurant.
We think that the insects
and the plants colonized
the land at about the same
time, 400 million years ago,
or December 21 on
the Cosmic Calendar.
This was a time when giant
mushrooms towered over the world's trees,
which were then no
more than a few feet high.
Mushrooms this gigantic
make you wonder just how big
the underground network that
supported them must have been.
And this was the time on Earth
when life learned how to fly.
The insects would have it all to
themselves for another 90 million years.
No flying reptiles, no birds,
no bats to gobble them up,
just other bugs.
Powered flight was a huge
evolutionary leap for insects,
allowing them to
spread all over the planet.
The insects put human
pretensions to shame.
Their tenure on Earth is
hundreds of times greater than ours.
They look much
the same to us today,
as they did to the dinosaurs
in the late Cretaceous.
Even back then, you didn't
want to mess with a wasp.
They've always been
voracious hunters.
Yes, there were giant redwoods
on the Earth 240 million years ago.
That wasp is out hunting
for food for her young.
Wasps did their thing for
another 100 million years.
And then, something happened
on an almost microscopic scale
that would paint the Earth in a
whole new spectrum of colors.
Back then, there was no such
thing as an animal partner to
aid the plants in
their fertilization,
to efficiently transport their
seed to the reproductive
organs of distant
plants, in other words,
to play cupid for them.
The drama unfolding here
is not the struggle between
the spider and the wasp,
it's those tiny particles
sticking to the wasp's legs.
Nothing much to look
at, just a few grains,
but this magic
dust, called pollen,
contained the power
to transform the world,
and to make possible
some of the most beautiful
sights ever seen on this planet.
Even today, more than
100 million years later,
this is still true.
Each grain of pollen sculpted
differently by evolution,
each a novel
strategy for survival,
sharpened by vast
expanses of time.
Pollen is tough.
It has to be.
It's so well-built that
you can fire it from a gun,
and it will emerge unscathed
with its identity fully intact.
The wasps had nurtured their
young during their helpless,
larval stage by bringing home
game for them to feast on.
The pollen was rich in protein,
a meal for the grubs when
Mom came home without any kills.
Over the eons, a new
kind of life-form evolved,
one that stopped bringing
meat home for dinner.
This new creature brought only
the magic dust that the flowers made.
Bees.
They had no appetite for the
mangled parts of dead insects.
They went on the all-pollen
diet, and it was no fad.
The bees became fully
committed pollinators.
The plants rewarded them
handsomely by evolving
evermore alluring
female sexual organs,
in outrageous colors
and seductive forms.
They concocted delicious
secretions, sweet nectars,
that would keep the bees
coming back for more,
again and again.
The Age of the
Flowers had begun.
Bees are masters of time,
traveling across
100 million years,
and they are none
the worse for wear.
These beings did more
than anyone else to fill the
Palace of Life with
sustenance and beauty.
We will explore its treasures
and mysteries later on our voyage.
TYSON: For thousands of years,
bees have been symbols
of mindless industry.
We always think of them
as being something like
biological robots, doomed to
live out their lives in lockstep,
shackled to the dreary roles
assigned to them by nature.
This is our first contact story.
It happened in a place called
Brunnwinkl in rural Austria,
in the early 1900s.
From the time Karl
von Frisch was a child,
he longed to understand
what the other animals knew,
how they perceived the world.
He wanted to know
if tiny fish saw color,
or had a sense of smell.
He invented experiments
to explore animal experience,
and he filmed them.
Starting in the
early 20th century,
he was the first to use the
new medium of motion pictures
to create popular science
entertainment and communication.
For thousands of years,
humans have noted the
eccentric dances of the bees.
But no one had ever looked
at them with the kind of respect
that assumed there was
a reason to their dancing.
Before Karl von Frisch,
no one ever thought to ask
why they moved this way and
that way in a succession
of elaborate figure eights
Von Frisch studied
every tiny bee gesture,
and became fascinated by a
mystery he couldn't explain.
He would set out a dish of
sugar water for a bee from
his experimental hive.
The bee would feast upon
it before flying back home.
The marked bee would
later return to dine on
the delicious sugar water.
Von Frisch noted
that in just a few hours,
a multitude of other
bees would join her there.
They were always
her fellow hive mates.
But here was the
really amazing thing,
von Frisch knew that
the other bees had not
followed the marked
bee to the feeding place.
How?
Because he had the hive
closely watched at all times.
He had been careful to use
sugar water, and not honey,
so that the bees' sense of smell
could not guide them to the reward.
He continued to move the
dish of sugar water farther away,
until it was several
kilometers from the hive.
Still, the hive mates
would find their way to it.
So, how did the painted
bee reveal the exact location
of the sugar water with such
precision that her hive mates
could unerringly
find their way there?
There was a secret
message in her choreography.
What had seemed to countless
generations of observers
to be nothing more
than the meaningless,
spasmodic motions of a dumb animal
was actually a complex message,
an equation informed by
mathematics, astronomy,
and an acute knowledge of time,
all synthesized to convey
the location of the riches
she hoped to share
with her sisters.
The dancer used the
angle of our star, the sun,
to indicate the general
direction of the food's location.
Von Frisch noted that when
a bee danced straight upward,
she meant, "fly toward the sun."
And when she moved downward,
she meant, "fly away from it."
Her swivels left and right conveyed
the food's exact coordinates in space,
sometimes kilometers away.
The duration of her dance,
down to a fraction of a second,
indicated the length of time it would
take her fellow bees to get there.
She even factored in wind speed to more
finely calibrate the message she danced.
And this was true at
any time of the year,
and from hive to hive,
from continent to continent.
Bees can do the math.
Why do I call this
a first contact story?
Two species as different
as any you can imagine,
humans and bees, evolved
on evolutionary pathways that
diverged 600 million years ago.
And yet, these two species
and as far as we know,
only they and we on this planet,
managed to create a
symbolic language written
in mathematics and science.
We lived side-by-side
with the bees for millennia,
never dreaming of the
complexity of their communications.
What we've learned about
bee society in the decades since
von Frisch puts some of our
loftiest human aspirations to shame,
and changes forever our
idea of intelligent life on Earth.
TYSON: We live in a time
when the world's democracies are
even more fragile than ever.
But there are places on
Earth where that's not true.
Where every
individual has a voice.
Where corruption is unknown.
Where the community
acts only when it has arrived
at consensus through
reason and debate.
This is one of those places.
Contrary to popular belief,
the hive is no monarchy.
The queen is no absolute
ruler controlling the other bees.
The queen's role is
almost entirely reproductive.
Any female bee, and that's
what the vast majority of bees are,
can ascend to the throne given
the right food and the space to grow.
When the weather
warms, and the trees bloom,
she graciously passes her scepter
to a new generation of queens.
That's the time
in the life of a hive,
in late spring or early summer,
when about half the hive's
bees, around 10,000 of them,
grow restless.
They decide it's time
to leave the mother hive,
to found a new colony,
they know not where.
Once they depart,
there's no turning back.
It takes courage to leave
home with no way back,
to risk everything, and
choose the unknown.
That pushing and shoving
is not meant to be hostile.
The workers are putting
the queen on a rigorous
exercise program so
that she can lose weight,
and get back into flying shape.
When everything's ready,
it's time for the first
leg of their odyssey.
It's time to swarm.
With a new queen now installed
on her throne in the original hive,
the old Queen Mother has
pride of place at the very
center of the swarm
of adventurers.
Hundreds of their most
senior members, scouts,
are dispatched on missions of
reconnaissance over
a five kilometer radius.
The scouts reconnoiter the local
trees for the best possible new home.
And they're extremely picky.
Not just any place will do.
The front door,
a hollow in a tree,
must be too high for bears
and other marauders to
easily reach in and
plunder their precious honey.
Total square footage
is of critical concern.
Honeybees don't hibernate.
They'll have to heat the
place for the long winter,
and be sure to produce
enough food, honey,
to see them through.
Each scout must measure
the exact dimensions,
height, width, and depth.
If it's even slightly
too small, or too large,
the entire swarm will be
wiped out before the next spring.
When all the scouts return,
the bees are ready to hold
their annual convention.
Each scout finds a place
to stand on the swarm.
There, she presents her
argument for the best site
she has discovered.
This house-hunting
discourse is conducted in
their scientific and
mathematical language.
Hundreds of scouts now use
the waggle dance to advertise
the home that they've found.
At first, opinions vary widely,
as each advocate attracts
her share of followers.
At our political conventions,
people routinely lie.
They press our buttons,
demonizing, scapegoating,
appealing to our fears.
But the bees can't risk that.
In both cases, ours and theirs,
the future depends on
seeing reality clearly.
But for some reason,
we are easily
manipulated and deceived.
The bees somehow know that
they have to stick to the facts.
They have to be accurate.
They can't oversell.
They act as if they understand
that it matters what's true.
That nature won't be fooled.
The scouts who have found
the optimum sites for the
swarm's new home are the
most passionate waggle dancers.
Close scientific observation
over many decades affirms
this astonishing fact,
each bee has a platonic
ideal of home in mind.
Moreover, the members
of the swarm don't take the
testimony of the most
popular dancers on faith.
Many of them go to
see for themselves.
Skepticism is a
survival mechanism.
The fact-checkers fly
off to the site to make
an independent evaluation.
Just think for a minute
how articulate the waggle
dance messaging has to be.
It's the coordinates
for one particular tree in
a whole forest of them.
The scouts make a
beeline for it every time.
If the hollow turns out to
be as good as advertised,
they will return to the
swarm, where they,
too, will dance its praises.
Without deceit, or
violence, or back-hive deals,
the scouts are the first
to arrive at consensus.
But the larger population
remains to be persuaded.
Once they all align
behind one dance,
once they've achieved unanimity
on the best new place to call home,
the great migration can begin.
Within 60 seconds
of the first takeoff,
10,000 bees depart in
formation for their new home.
With the sun as their compass,
the airborne colony turns
to its queen for leadership.
The swarm is a kind of mind,
a collective consciousness to
which every individual
bee makes a contribution.
Now that the move is
complete, it's time to unpack,
decorate the nursery,
stock the pantry,
and make the place their
own, until the weather warms,
and the trees bloom again.
And so it has been for
tens of millions of years.
This intimate knowledge
of the lives of the bees is the
legacy of Karl von Frisch,
who was the first to decrypt
their symbolic language, to
make contact with a completely
different kind of mind.
Today, we study bee brains.
We are building a bridge over
the chasm that has separated
two species for
half a billion years.
And yet, after all that time,
there are places where our
species and theirs converged,
agriculture, architecture,
language, and politics.
We now know that bees sleep,
and some scientists
suspect that they dream.
What knocked us
out of our trance,
so that we could finally
recognize another intelligence
that had always been there?
A few generations
before von Frisch,
one man did more than
any other to open the way.
For me, he was the greatest spiritual
teacher of the last thousand years.
The flowers he planted
here long ago still bloom.
The hive he founded,
and studied with open eyes,
continues to flourish.
It was he who figured out
how the Palace of Life could
evolve from a modest one-room
structure to an edifice of soaring towers,
reaching to the stars
and it was he who
first glimpsed the secret
lives of our fellow earthlings.
,
A shrine to all the broken
branches on the tree of life.
But that tree still lives,
it's seen 4 billion spring times
since it first took root.
Its flowers burst forth with
unforeseeable possibilities.
A tiny, one-celled
organism evolves into you
and everything
else that is Earthlife.
There's just no way of
predicting, for now, anyway,
where life can lead.
No way of foretelling the
forms and capabilities that
can issue from simpler organisms
over vast expanses of time.
Life itself can be seen as an
emergent property of chemistry,
science as an
emergent property of life,
a way that life has found
to begin to know itself.
Four billion years.
These are the most
ancient towers that life built.
♪♪
Nobody knew this palace existed.
It was hidden by the mists of
time, and enshrouded in myth.
But one man dared
to part that curtain.
He studied as many
kinds of life as he could.
He sailed to a group of
islands on the far side of
the planet in search
of exotic species.
He studied the bees,
the flowers, the finches,
mollusks, and
earthworms, for 30 years.
A radical pattern emerged,
one that would shake the world.
It still does, he debunked
the story of Adam and Eve.
Humans are not the kings
of life, created separately,
and charged with its
management but instead,
an upstart offspring of
its stately, ancient family.
He waited to tell the world
what he had discovered until
he could demonstrate its truth
beyond a shadow of a doubt.
But then he made
another great leap,
Charles Darwin was also
one of the first to recognize that
if all life is related,
there were certain
philosophical implications.
If we were not created
separately from the other animals,
must we not share more
of who we are with them?
Our awareness, our
relationships with others,
even our feelings?
Instead of a single island of
human perception in the universe,
Darwin realized that we
are surrounded by other
ways of being
alive and conscious.
For Darwin, science was
a pathway to a deeper level
of empathy and humility.
When word reached him that a
local farmer was mistreating his sheep,
Darwin dropped his research
to make an arrest of the man.
He exposed the horrendous
suffering of wild animals
caught in the
jaws of steel traps,
and experimented on surgically
without benefit of anesthesia.
Throughout his entire life,
he was haunted by an image of
the helpless dog who licked
his tormentor's hand while
being dissected by a scientist.
And this compassion extended
even to our own species.
He recognized the blindness of
his 19th century contemporaries.
In his autobiography,
he recounted the story of
an African woman who jumped
off a cliff to her certain death,
rather than submit to being
enslaved by the Portuguese.
Darwin observed that if she had been a
Roman matron from classical antiquity,
she would be viewed
very differently.
We would be naming
our daughters after her.
It was he who began the
scientific study of the hidden
world beneath the forest floor.
Darwin worshipped nature.
His knowledge of science informed
and drove his compassion to new heights.
Behold, Saccorhytus Coronarius.
When it lived, 550 million
years ago, it was microscopic.
But for us now, it looms
large because this creature is
the earliest common
ancestor we've yet found,
a physical connection we share
with almost every animal on Earth.
If we could only take
that connection to heart.
If some day, we could
synthesize all our knowledge
of life, and use it to build
an Arch of Experience,
a way for us to really feel
what it's like to be the other.
What if we could truly know
the joy of a giant condor
riding the thermals
high in the Andes,
or the anguish of a humpback
whale singing to its lover
across the vast Pacific,
or the fear in the heart of
our most hated enemy, how
would that change this world?
And all of them, and each of us,
made from the same
toolbox, with the same genetic
material, but on different
evolutionary voyages.
Are there other possible
worlds in the cosmos where
life's pathways
converge and intersect?
Remember our
friends, the tardigrades,
who can rise from the dead
to thrive on Earth in those
hellish places where
no one else can live?
They have survived
all five mass extinctions,
and they can even live in the
vacuum of space without protection.
These creatures, too small
to see with the naked eye,
have been observed
by scientists,
using a scanning
electron microscope,
doing something that we
like to think only humans do.
They're not performing any of
the known biological functions
that organisms need to survive.
They're gently giving
each other pleasure,
affection, tenderness
for its own sake.
If bees dream, and
tardigrades snuggle,
are there countless roads
in the universe that life can
take to wonder and to love?
If we could stand beneath
the Arch of Experience,
or build one inside ourselves,
maybe we'd be able to give our
first contact story a better outcome.
(computer signals)
(computer signals)
heavens for signs of intelligent life.
But what would
we do if we found it?
Are we ready for first contact?
Would we be smart enough to even know
if someone was sending us a message?
We've only been able to detect
radio signals for a little over a century.
Extraterrestrial civilizations
could have been bombarding
Earth with radio signals for millions
and billions of years before then,
and nobody here would have had
any inkling that it had ever happened.
And what if we seem
just like ants to them.
We all know how we treat ants.
What if the extraterrestrials
are smarter than we are,
have technology, weapons
that render us helpless?
The history of first contact
among terrestrial civilizations,
the humans of east and west,
north and south, has
been scarred by genocide.
In all of the cosmos,
is there such a thing as a first
contact story with a happy ending?
I know of one
first contact story,
but it's too soon to
know how it will turn out
♪♪
(theme music playing)
♪♪
♪♪
Series brought to you by Sailor420
!!! Hope you enjoy the TV-Series !!!
This scientific and
architectural wonder of the
world is in Southern China,
it's the largest radio
telescope on Earth,
in fact it's the largest
telescope of any kind.
The Five-Hundred Meter
Aperture Spherical Radio Telescope,
or FAST, as it's known.
This dish is a giant listening
device for detecting radio waves
that propagate
throughout the cosmos.
The mission of this telescope is
to solve unanswered questions
about the origin
of the universe,
and its early history.
It will also search for pulsars,
those rapidly
rotating neutron stars,
and for telltale signs
of gravitational waves,
ripples in the fabric
of space-time
And it will search for
signs of alien civilizations.
Especially those
very far away
I want to take you to a
place where we've begun to
eavesdrop on an intricate
global communications network.
We didn't even know
it existed until recently.
Complex beyond
our wildest imagining,
it was built by a
community whose population
is inconceivably vast.
Our distant ancestors,
tiny shrew-like animals,
came of age in places not
too different from this one.
Forests.
Maybe they knew what
we've only recently discovered.
The secret life of this
place is filled with drama,
abuzz with conversation.
Much of it is spoken in an
electrochemical language,
and it takes place
on a scale too small,
and in motion too slow,
for creatures like
us to even notice.
But there's something even
more amazing that was going
on right beneath our
feet, for the longest time,
and on a global scale,
and we had no
inkling that it was there.
An ancient, subterranean
worldwide web,
a vast neural network is
what binds the forest together,
making it an intercommunicating,
and interacting
dynamic organism.
One with agency, and the power
to influence events above ground.
It's called the mycelium.
It's a hidden matrix, the
creation of an enduring
collaboration among fungi,
plants, bacteria, and animals.
90% of all the trees and
plants on Earth are involved
in the mutually beneficial
relationship made
possible by the mycelium.
They exchange
nourishment, messages,
and empathy with one
another, across species,
and even across
the kingdoms of life.
Mushrooms are the
reproductive organs,
the fruiting bodies
of the mycelium.
To see a mushroom growing
wild in the forest is to know
that the great natural Internet
is online beneath your feet.
Some mushrooms spread
trillions of spores on the breeze,
each spore a paratrooper
carrying life's message.
This is mushroom sex.
After a while, in their
search for moisture,
this new segment of the
mycelium will return down
to the underworld, and link
up to the greater network.
The secret lives of trees
have been long-hidden from us.
For them, the mycelium is
their lifeline to one another.
It makes the forest a community.
They use it to parent,
to nurture each other
and even to devise
a stay of execution,
a reprieve from the axe.
When a tree is cut
down in the forest,
other trees reach out to
the victim with their root tips,
and send lifesaving
sustenance, water, sugar,
and other nutrients
via the mycelium.
This continuous IV drip
from neighboring trees can
keep this stump alive for
decades, and even centuries.
And they don't only
do it for their own kind.
They do it for the
trees of other species.
Why?
Is it because they know
that their lives depend on
the health of the whole forest,
and even on beings very
different from themselves?
Is it possible that the trees can
think in longer terms than we do?
We know they have
excellent parenting skills.
Take this fir tree.
This younger tree
here is its offspring,
and it requires
constant attention.
It's hardly young by our
standards, 60 years old.
But young trees don't know
that if they grow up too quickly,
there will be too much air
in the cells of their trunks.
Later, when the stormy
winds and predators come,
they'll be weak and vulnerable.
Like the young
of other kingdoms,
the fir wants to grow into
the light as soon as possible.
But the mother fir shades
it with her branches so that
it cannot binge on sunlight,
and grow up too
fast for its own good.
How many forests have I
been in without any awareness
of what was really
happening all around me?
Who are we to search for alien
intelligence when we can't even recognize,
or respect, the
consciousness all around us,
and even beneath our feet?
This stately maple senses
that the tiny caterpillar
is nipping at its leaf.
A signal is sent
through the tree,
just as it would go through
our own nervous system.
But not nearly so fast.
Again, the trees live on
a much slower time scale.
The speed of "ouch"
for a tree is only an inch,
every three minutes.
So, it will take at least
an hour for the tree to react
by generating the chemical
that will chase this pest away.
When a predator strikes,
the first thing a tree does
is to take a saliva sample in order to
sequence the DNA of the invading species.
It then tailors its chemical
response to the special
vulnerability of its enemy.
In certain cases, it releases
the precise pheromone that
will attract its enemy's enemy
to do the tree's fighting for it.
Is it fair to say that the
trees have a deep knowledge
of chemistry, entomology,
and other earth sciences?
How exactly is their
knowing different from ours?
Is it any different when we
humans do these things?
Throughout nature, we
find these electrochemical
conversations between
the life-forms of different
species and kingdoms.
But what of a conversation
between different worlds?
What might we share with the
intelligent civilization of another world?
Science and mathematics.
The symbolic languages of
the scientist, mathematician,
and the engineer avoid
those things that are lost
in translation from
one culture to another.
Symbolic languages, including
those used in programming,
have a much higher degree
of precision than words do.
They are not as open
to misinterpretation.
I know of only one
nonhuman symbolic language,
and only one instance when
we humans made contact with
the life-form that uses it.
Their knowledge of astronomy and
mathematics would astonish most of us.
Their commitment to resolving
their differences democratically,
and reaching the broadest
possible consensus through debate,
is unparalleled by any
human society that I know.
Tens of millions of years ago,
they had been carnivores,
but they gave that
up to become vegans.
It changed their world,
and resulted in surpassing
beauty wherever they wandered.
They are explorers who
use their symbolic language
to tell each other about the things
they have discovered on their travels.
This is their night sky.
I want to tell you their story.
TYSON: This is the shore
of the Panthalassic Ocean,
a sea that covered Earth's
entire Northern Hemisphere
in a period named
the Ordovician.
We've compressed all of
the time from this very second,
back to the beginning
of the universe,
into a single calendar Earth
year, a Cosmic Calendar.
Every month represents a
little more than a billion years.
Every week, nearly
300 million years.
Every day, about
40 million years.
The Big Bang is the first
moment of New Year's Day.
Our present, right now, is
at the stroke of midnight on
New Year's Eve.
I'm standing on the morning of
December 20th on the Cosmic Calendar,
480 million years
ago in Earth's history.
This was the time when
life began to diversify.
It's remembered as the Great
Ordovician Biodiversity Event.
It came 40 million years
after life's first big leap
into diversification known
as the Cambrian explosion.
This was the dawn
of the arthropods,
the invertebrates who wear
their skeletons on the outside,
instead of on the inside,
as we would one day do
hundreds of millions of years later.
The arthropods of the
Ordovician pioneered the most
successful body plan
ever evolved by life.
Even today, more than 80% of
all living animals are arthropods.
But around the time the
plants began to venture out
of the waters, a crustacean
staggered ashore,
and made a home in
the new world of the land.
Insects evolved
from the crustaceans.
A thought I do my best to
hold at bay whenever I'm dining
in a seafood restaurant.
We think that the insects
and the plants colonized
the land at about the same
time, 400 million years ago,
or December 21 on
the Cosmic Calendar.
This was a time when giant
mushrooms towered over the world's trees,
which were then no
more than a few feet high.
Mushrooms this gigantic
make you wonder just how big
the underground network that
supported them must have been.
And this was the time on Earth
when life learned how to fly.
The insects would have it all to
themselves for another 90 million years.
No flying reptiles, no birds,
no bats to gobble them up,
just other bugs.
Powered flight was a huge
evolutionary leap for insects,
allowing them to
spread all over the planet.
The insects put human
pretensions to shame.
Their tenure on Earth is
hundreds of times greater than ours.
They look much
the same to us today,
as they did to the dinosaurs
in the late Cretaceous.
Even back then, you didn't
want to mess with a wasp.
They've always been
voracious hunters.
Yes, there were giant redwoods
on the Earth 240 million years ago.
That wasp is out hunting
for food for her young.
Wasps did their thing for
another 100 million years.
And then, something happened
on an almost microscopic scale
that would paint the Earth in a
whole new spectrum of colors.
Back then, there was no such
thing as an animal partner to
aid the plants in
their fertilization,
to efficiently transport their
seed to the reproductive
organs of distant
plants, in other words,
to play cupid for them.
The drama unfolding here
is not the struggle between
the spider and the wasp,
it's those tiny particles
sticking to the wasp's legs.
Nothing much to look
at, just a few grains,
but this magic
dust, called pollen,
contained the power
to transform the world,
and to make possible
some of the most beautiful
sights ever seen on this planet.
Even today, more than
100 million years later,
this is still true.
Each grain of pollen sculpted
differently by evolution,
each a novel
strategy for survival,
sharpened by vast
expanses of time.
Pollen is tough.
It has to be.
It's so well-built that
you can fire it from a gun,
and it will emerge unscathed
with its identity fully intact.
The wasps had nurtured their
young during their helpless,
larval stage by bringing home
game for them to feast on.
The pollen was rich in protein,
a meal for the grubs when
Mom came home without any kills.
Over the eons, a new
kind of life-form evolved,
one that stopped bringing
meat home for dinner.
This new creature brought only
the magic dust that the flowers made.
Bees.
They had no appetite for the
mangled parts of dead insects.
They went on the all-pollen
diet, and it was no fad.
The bees became fully
committed pollinators.
The plants rewarded them
handsomely by evolving
evermore alluring
female sexual organs,
in outrageous colors
and seductive forms.
They concocted delicious
secretions, sweet nectars,
that would keep the bees
coming back for more,
again and again.
The Age of the
Flowers had begun.
Bees are masters of time,
traveling across
100 million years,
and they are none
the worse for wear.
These beings did more
than anyone else to fill the
Palace of Life with
sustenance and beauty.
We will explore its treasures
and mysteries later on our voyage.
TYSON: For thousands of years,
bees have been symbols
of mindless industry.
We always think of them
as being something like
biological robots, doomed to
live out their lives in lockstep,
shackled to the dreary roles
assigned to them by nature.
This is our first contact story.
It happened in a place called
Brunnwinkl in rural Austria,
in the early 1900s.
From the time Karl
von Frisch was a child,
he longed to understand
what the other animals knew,
how they perceived the world.
He wanted to know
if tiny fish saw color,
or had a sense of smell.
He invented experiments
to explore animal experience,
and he filmed them.
Starting in the
early 20th century,
he was the first to use the
new medium of motion pictures
to create popular science
entertainment and communication.
For thousands of years,
humans have noted the
eccentric dances of the bees.
But no one had ever looked
at them with the kind of respect
that assumed there was
a reason to their dancing.
Before Karl von Frisch,
no one ever thought to ask
why they moved this way and
that way in a succession
of elaborate figure eights
Von Frisch studied
every tiny bee gesture,
and became fascinated by a
mystery he couldn't explain.
He would set out a dish of
sugar water for a bee from
his experimental hive.
The bee would feast upon
it before flying back home.
The marked bee would
later return to dine on
the delicious sugar water.
Von Frisch noted
that in just a few hours,
a multitude of other
bees would join her there.
They were always
her fellow hive mates.
But here was the
really amazing thing,
von Frisch knew that
the other bees had not
followed the marked
bee to the feeding place.
How?
Because he had the hive
closely watched at all times.
He had been careful to use
sugar water, and not honey,
so that the bees' sense of smell
could not guide them to the reward.
He continued to move the
dish of sugar water farther away,
until it was several
kilometers from the hive.
Still, the hive mates
would find their way to it.
So, how did the painted
bee reveal the exact location
of the sugar water with such
precision that her hive mates
could unerringly
find their way there?
There was a secret
message in her choreography.
What had seemed to countless
generations of observers
to be nothing more
than the meaningless,
spasmodic motions of a dumb animal
was actually a complex message,
an equation informed by
mathematics, astronomy,
and an acute knowledge of time,
all synthesized to convey
the location of the riches
she hoped to share
with her sisters.
The dancer used the
angle of our star, the sun,
to indicate the general
direction of the food's location.
Von Frisch noted that when
a bee danced straight upward,
she meant, "fly toward the sun."
And when she moved downward,
she meant, "fly away from it."
Her swivels left and right conveyed
the food's exact coordinates in space,
sometimes kilometers away.
The duration of her dance,
down to a fraction of a second,
indicated the length of time it would
take her fellow bees to get there.
She even factored in wind speed to more
finely calibrate the message she danced.
And this was true at
any time of the year,
and from hive to hive,
from continent to continent.
Bees can do the math.
Why do I call this
a first contact story?
Two species as different
as any you can imagine,
humans and bees, evolved
on evolutionary pathways that
diverged 600 million years ago.
And yet, these two species
and as far as we know,
only they and we on this planet,
managed to create a
symbolic language written
in mathematics and science.
We lived side-by-side
with the bees for millennia,
never dreaming of the
complexity of their communications.
What we've learned about
bee society in the decades since
von Frisch puts some of our
loftiest human aspirations to shame,
and changes forever our
idea of intelligent life on Earth.
TYSON: We live in a time
when the world's democracies are
even more fragile than ever.
But there are places on
Earth where that's not true.
Where every
individual has a voice.
Where corruption is unknown.
Where the community
acts only when it has arrived
at consensus through
reason and debate.
This is one of those places.
Contrary to popular belief,
the hive is no monarchy.
The queen is no absolute
ruler controlling the other bees.
The queen's role is
almost entirely reproductive.
Any female bee, and that's
what the vast majority of bees are,
can ascend to the throne given
the right food and the space to grow.
When the weather
warms, and the trees bloom,
she graciously passes her scepter
to a new generation of queens.
That's the time
in the life of a hive,
in late spring or early summer,
when about half the hive's
bees, around 10,000 of them,
grow restless.
They decide it's time
to leave the mother hive,
to found a new colony,
they know not where.
Once they depart,
there's no turning back.
It takes courage to leave
home with no way back,
to risk everything, and
choose the unknown.
That pushing and shoving
is not meant to be hostile.
The workers are putting
the queen on a rigorous
exercise program so
that she can lose weight,
and get back into flying shape.
When everything's ready,
it's time for the first
leg of their odyssey.
It's time to swarm.
With a new queen now installed
on her throne in the original hive,
the old Queen Mother has
pride of place at the very
center of the swarm
of adventurers.
Hundreds of their most
senior members, scouts,
are dispatched on missions of
reconnaissance over
a five kilometer radius.
The scouts reconnoiter the local
trees for the best possible new home.
And they're extremely picky.
Not just any place will do.
The front door,
a hollow in a tree,
must be too high for bears
and other marauders to
easily reach in and
plunder their precious honey.
Total square footage
is of critical concern.
Honeybees don't hibernate.
They'll have to heat the
place for the long winter,
and be sure to produce
enough food, honey,
to see them through.
Each scout must measure
the exact dimensions,
height, width, and depth.
If it's even slightly
too small, or too large,
the entire swarm will be
wiped out before the next spring.
When all the scouts return,
the bees are ready to hold
their annual convention.
Each scout finds a place
to stand on the swarm.
There, she presents her
argument for the best site
she has discovered.
This house-hunting
discourse is conducted in
their scientific and
mathematical language.
Hundreds of scouts now use
the waggle dance to advertise
the home that they've found.
At first, opinions vary widely,
as each advocate attracts
her share of followers.
At our political conventions,
people routinely lie.
They press our buttons,
demonizing, scapegoating,
appealing to our fears.
But the bees can't risk that.
In both cases, ours and theirs,
the future depends on
seeing reality clearly.
But for some reason,
we are easily
manipulated and deceived.
The bees somehow know that
they have to stick to the facts.
They have to be accurate.
They can't oversell.
They act as if they understand
that it matters what's true.
That nature won't be fooled.
The scouts who have found
the optimum sites for the
swarm's new home are the
most passionate waggle dancers.
Close scientific observation
over many decades affirms
this astonishing fact,
each bee has a platonic
ideal of home in mind.
Moreover, the members
of the swarm don't take the
testimony of the most
popular dancers on faith.
Many of them go to
see for themselves.
Skepticism is a
survival mechanism.
The fact-checkers fly
off to the site to make
an independent evaluation.
Just think for a minute
how articulate the waggle
dance messaging has to be.
It's the coordinates
for one particular tree in
a whole forest of them.
The scouts make a
beeline for it every time.
If the hollow turns out to
be as good as advertised,
they will return to the
swarm, where they,
too, will dance its praises.
Without deceit, or
violence, or back-hive deals,
the scouts are the first
to arrive at consensus.
But the larger population
remains to be persuaded.
Once they all align
behind one dance,
once they've achieved unanimity
on the best new place to call home,
the great migration can begin.
Within 60 seconds
of the first takeoff,
10,000 bees depart in
formation for their new home.
With the sun as their compass,
the airborne colony turns
to its queen for leadership.
The swarm is a kind of mind,
a collective consciousness to
which every individual
bee makes a contribution.
Now that the move is
complete, it's time to unpack,
decorate the nursery,
stock the pantry,
and make the place their
own, until the weather warms,
and the trees bloom again.
And so it has been for
tens of millions of years.
This intimate knowledge
of the lives of the bees is the
legacy of Karl von Frisch,
who was the first to decrypt
their symbolic language, to
make contact with a completely
different kind of mind.
Today, we study bee brains.
We are building a bridge over
the chasm that has separated
two species for
half a billion years.
And yet, after all that time,
there are places where our
species and theirs converged,
agriculture, architecture,
language, and politics.
We now know that bees sleep,
and some scientists
suspect that they dream.
What knocked us
out of our trance,
so that we could finally
recognize another intelligence
that had always been there?
A few generations
before von Frisch,
one man did more than
any other to open the way.
For me, he was the greatest spiritual
teacher of the last thousand years.
The flowers he planted
here long ago still bloom.
The hive he founded,
and studied with open eyes,
continues to flourish.
It was he who figured out
how the Palace of Life could
evolve from a modest one-room
structure to an edifice of soaring towers,
reaching to the stars
and it was he who
first glimpsed the secret
lives of our fellow earthlings.
,
A shrine to all the broken
branches on the tree of life.
But that tree still lives,
it's seen 4 billion spring times
since it first took root.
Its flowers burst forth with
unforeseeable possibilities.
A tiny, one-celled
organism evolves into you
and everything
else that is Earthlife.
There's just no way of
predicting, for now, anyway,
where life can lead.
No way of foretelling the
forms and capabilities that
can issue from simpler organisms
over vast expanses of time.
Life itself can be seen as an
emergent property of chemistry,
science as an
emergent property of life,
a way that life has found
to begin to know itself.
Four billion years.
These are the most
ancient towers that life built.
♪♪
Nobody knew this palace existed.
It was hidden by the mists of
time, and enshrouded in myth.
But one man dared
to part that curtain.
He studied as many
kinds of life as he could.
He sailed to a group of
islands on the far side of
the planet in search
of exotic species.
He studied the bees,
the flowers, the finches,
mollusks, and
earthworms, for 30 years.
A radical pattern emerged,
one that would shake the world.
It still does, he debunked
the story of Adam and Eve.
Humans are not the kings
of life, created separately,
and charged with its
management but instead,
an upstart offspring of
its stately, ancient family.
He waited to tell the world
what he had discovered until
he could demonstrate its truth
beyond a shadow of a doubt.
But then he made
another great leap,
Charles Darwin was also
one of the first to recognize that
if all life is related,
there were certain
philosophical implications.
If we were not created
separately from the other animals,
must we not share more
of who we are with them?
Our awareness, our
relationships with others,
even our feelings?
Instead of a single island of
human perception in the universe,
Darwin realized that we
are surrounded by other
ways of being
alive and conscious.
For Darwin, science was
a pathway to a deeper level
of empathy and humility.
When word reached him that a
local farmer was mistreating his sheep,
Darwin dropped his research
to make an arrest of the man.
He exposed the horrendous
suffering of wild animals
caught in the
jaws of steel traps,
and experimented on surgically
without benefit of anesthesia.
Throughout his entire life,
he was haunted by an image of
the helpless dog who licked
his tormentor's hand while
being dissected by a scientist.
And this compassion extended
even to our own species.
He recognized the blindness of
his 19th century contemporaries.
In his autobiography,
he recounted the story of
an African woman who jumped
off a cliff to her certain death,
rather than submit to being
enslaved by the Portuguese.
Darwin observed that if she had been a
Roman matron from classical antiquity,
she would be viewed
very differently.
We would be naming
our daughters after her.
It was he who began the
scientific study of the hidden
world beneath the forest floor.
Darwin worshipped nature.
His knowledge of science informed
and drove his compassion to new heights.
Behold, Saccorhytus Coronarius.
When it lived, 550 million
years ago, it was microscopic.
But for us now, it looms
large because this creature is
the earliest common
ancestor we've yet found,
a physical connection we share
with almost every animal on Earth.
If we could only take
that connection to heart.
If some day, we could
synthesize all our knowledge
of life, and use it to build
an Arch of Experience,
a way for us to really feel
what it's like to be the other.
What if we could truly know
the joy of a giant condor
riding the thermals
high in the Andes,
or the anguish of a humpback
whale singing to its lover
across the vast Pacific,
or the fear in the heart of
our most hated enemy, how
would that change this world?
And all of them, and each of us,
made from the same
toolbox, with the same genetic
material, but on different
evolutionary voyages.
Are there other possible
worlds in the cosmos where
life's pathways
converge and intersect?
Remember our
friends, the tardigrades,
who can rise from the dead
to thrive on Earth in those
hellish places where
no one else can live?
They have survived
all five mass extinctions,
and they can even live in the
vacuum of space without protection.
These creatures, too small
to see with the naked eye,
have been observed
by scientists,
using a scanning
electron microscope,
doing something that we
like to think only humans do.
They're not performing any of
the known biological functions
that organisms need to survive.
They're gently giving
each other pleasure,
affection, tenderness
for its own sake.
If bees dream, and
tardigrades snuggle,
are there countless roads
in the universe that life can
take to wonder and to love?
If we could stand beneath
the Arch of Experience,
or build one inside ourselves,
maybe we'd be able to give our
first contact story a better outcome.
(computer signals)
(computer signals)